
J. Fluid Mech. (1997), vol. 342, pp. 295–314. Printed in the United Kingdom

c© 1997 Cambridge University Press

295

Free convection in liquid gallium

By M. G. B R A U N S F U R T H1, A. C. S K E L D O N2†, A. J U E L1,
T. M U L L I N1 ‡ AND D. S. R I L E Y2 §

1Department of Atmospheric Oceanic and Planetary Physics, Clarendon Laboratory,

Oxford, OX1 3PU, UK
2School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK

(Received 22 November 1995 and in revised form 20 February 1997)

Free convection in liquid metals is of significant practical interest to the crystal-
growing community since the adverse effects of convective instabilities in the melt
phase can be frozen into the solid product. Here, we present the results of a
combined numerical and experimental study of steady convective flows in a sample
of liquid gallium which is heated at one end and cooled at the other. Experimental
measurements of temperature distributions in the flow are compared with the standard
Hadley-cell solution and with the numerical results obtained from a two-dimensional
model. Excellent quantitative agreement is found between all three for low Grashof
numbers but a systematic divergence between the results is seen as this parameter is
increased.

1. Introduction
The homogeneity and purity of monolithic crystals can be adversely affected by con-

vective fluid motion in the melt. For example, in the horizontal Bridgman technique,
layers of impurities known as striations degrade the performance of semiconductor
devices made from the resulting solid. This is discussed by Müller & Wiehelm (1964)
who correlate the spacing of these striations in an InSb crystal with oscillations of
the temperature in the liquid phase. Numerical work by Crochet, Geyling, & van
Schaftingen (1983) and a theoretical model developed by Thevenard et al. (1991) for
crystals grown from a low-Prandtl-number fluid suggest that the striations are a result
of periodic solidification and remelt at the interface.

An understanding of these important phenomena can best be achieved by first
obtaining a deeper insight into the fundamental fluid mechanics underlying them.
The aim of the present study is to investigate the details of the steady flows and thus
provide a firm foundation for future work on the more complicated dynamical phe-
nomena found at large temperature differences. These include thermal oscillations of
the type discussed above. We present the results of a carefully controlled experimental
study of the steady convective flows in a cavity containing molten gallium, which is a
liquid metal above 302.8 K. The fluid container is heated from one end and cooled at
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Figure 1. Geometry of the cavity.

the other and is designed to be a laboratory model of the Bridgman crystal-growing
geometry, see figure 1. We compare observations from this experiment with theory
and with the results of two-dimensional numerical calculations.

The non-dimensional parameters governing the flow are Pr and Gr, the Prandtl and
Grashof numbers, as well as the geometrical aspect ratios Al = l/h and Aw = w/h,
where l, w and h are the length, width and height of the cell, respectively. The Grashof
number, the primary parameter of interest here, can be changed in a controlled way
by altering the applied temperature difference. In a given experiment, the Prandtl
number is usually considered to be a constant, but it can be systematically varied by
exploiting the temperature dependence of the material properties. This feature is used
by Braunsfurth & Mullin (1996) to explore the onset of oscillations and to uncover
novel dynamical behaviour. Since molten gallium is a metal, its conductivity is large
and its Prandtl number low, typically around 0.02.

In previous experimental studies the main focus has been on time-dependent
phenomena and there appear to be only two detailed experimental studies of steady
flows in the published literature. In the first of these, Hurle, Jakeman & Johnson (1974)
report measurements of the motion in a cell with aspect ratio Al × Aw = 2.73× 1.18.
At the relatively large Grashof number of 105, they find that the flow consists of
a convection loop with fluid rising adjacent to the hot thermode and descending
near the cold one (see figure 11a in Hurle et al.) This flow is three-dimensional in
nature, and is asymmetric with respect to the midplane of the cell. In contrast, Hung
& Andereck (1988) use a cell with aspect ratio 1 × 17.89 × 17.78 to generate an
approximately two-dimensional flow. They show that a steady single convection loop
loses stability to a longitudinal co-rotating multicellular state but report that direct
observations of this phenomenon are difficult since the effect on the temperature field
is very small.

A mathematical model relevant to this flow is discussed by Hart (1972) who obtains
an exact parallel-flow result, often referred to as the Hadley solution, for an infinitely
long layer of fluid with an applied horizontal temperature gradient. The stability
of this solution to both transverse and longitudinal disturbances is considered by
Hart (1972) and Hart (1983), and to longitudinal disturbances by Gill (1974). Hart
shows that for Prandtl numbers above 0.015, the first instability is to a longitudinal
oscillatory solution. Hart’s results are refined and extended by Laure (1987) and Kuo
& Korpella (1988), who show that for Prandtl numbers above 0.034 instability of the
Hadley cell takes the form of a longitudinal oscillatory solution. For Prandtl numbers
below 0.034, the first transition occurs at a Grashof number of approximately 104

and leads to a steady transverse roll solution instead. Laure (1987) performs a weakly
nonlinear stability analysis and shows that a co-rotating roll solution is locally stable.

The effect of endwalls in a long cavity is considered by Cormack, Leal & Imberger
(1974) who use an asymptotic approach. This involves dividing the cavity into three
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regions: a central region consisting of a parallel flow and two approximately square
end regions in which the flow turns round. Cormack et al. find that the Hadley
model gives a reasonable solution to the flow in the centre of the cavity provided
Gr2Pr2/Al � 3. For the experimental configuration used in our study, this suggests
that a parallel flow might be expected provided Gr � 5.5 × 104. Further theoretical
progress with realistic boundary conditions and aspect ratios is difficult and hence
recent studies has been made using numerical techniques.

Convection in molten gallium was used as a ‘benchmark’ problem for numerical
methods and the results of the exercise are reported by Roux (1990). The main
effort is focused on rectangular cavities with Al = 4 and Prandtl numbers of 0 and
0.015. The boundary conditions relevant to our experiment are non-slip, impermeable
boundaries where the upper and lower walls are insulating and the endwalls are
isothermal. In this case, the reported two-dimensional numerical results show that
the flow is parallel over much of the cavity for low Grashof numbers. As the Grashof
number increases the flow evolves first to a more pronounced single-cell state and
then to one with three co-rotating cells. Eventually, the steady flow loses stability to
transverse oscillations; the possibility of instability to longitudinal oscillations is not
explored. This sequence is qualitatively the same at a Prandtl number of both 0 and
0.015, although a change in the Prandtl number from 0 to 0.015 increases the critical
Grashof number for the onset of oscillations from 2.5 × 104 to 3.8 × 104 (see also
Winters 1988 for further results on Al = 4 cavities).

There has been a limited number of three-dimensional numerical studies. For a
1×4×1 cavity and Pr = 0, both Afrid & Zebib (1990) and Gervasio (see Roux 1990)
find that the flow remains in a steady unicellular state for Gr < 105, but thereafter
begins to oscillate. Gervasio and Extremet et al. (see Roux 1990) find that an increase
in the Prandtl number to 0.015 inhibits the onset of oscillations so that the flow is
steady for Gr < 1.5× 105.

Despite all of the above research, fundamental issues concerning the convective
motion remain unresolved. Progress is difficult because full three-dimensional numer-
ical studies are computationally expensive and also relevant experiments are difficult
to perform in a carefully controlled way. The approach we adopt is to test the range
of validity of the simple model flows by performing quantitative comparison between
the results of established theory, numerical calculation and experiment. Here, we
begin by considering the Hadley cell which, in the past, has provided the main source
of theoretical results for comparing with experiment. Since this is an infinite-layer
model, it is important to understand the range of validity of the approximation in
bounded containers. We give the equations of motion and briefly review the Hadley
model in §2. In §3, we discuss the numerical solution method and present computed
results for parameter ranges relevant to the experiment. The experimental apparatus
is described in §4. In §5, we discuss the experimental boundary conditions and the
material properties of gallium and in §6 we compare the theory and the numerical
solutions with experimental measurements. Finally, we present some conclusions in
§7.

2. The equations of motion
The numerical model consists of a rectangular, fluid-filled cavity of height h and

length l. The fluid motion is driven by differential heating, the endwalls being held at
constant temperatures Th, Tc where the suffices h and c correspond to hot and cold,
respectively. As discussed in §5.1 below, the experimental upper and lower boundaries
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are, to a good approximation, insulating and the end boundaries are isothermal. All
the walls are taken to be impermeable and non-slip.

The equations of motion are the Navier–Stokes equations coupled with the energy
equation. For the range of temperatures appropriate to the experimental conditions
the Boussinesq approximation is assumed to hold and hence, in the usual notation,

∇ · u = 0,

∂u

∂t
+ u · ∇u = − 1

ρ0

∇p+ ν∇2u+ gβ(T − Tc)j ,

∂T

∂t
+ u · ∇T = κ∇2T ,

 (2.1)

with boundary conditions

u = 0 and
∂T

∂y
= 0 on y = ±h

2
,

and

u = 0 and T = Th on x = l, u = 0 and T = Tc on x = 0.

As pointed out by Gill (1966), equations (2.1) with these boundary conditions are
centro-symmetric.

Non-dimensionalizing equations (2.1) using h, νGr1/2/h, h2/ν,Grρ0ν
2/h2, as the

length, velocity, time and pressure scales, respectively, and measuring temperature
relative to Tc in units of γ = (Th − Tc)h/l gives the non-dimensional equations

∇ · u = 0,

∂u

∂t
+ Gr1/2u∇ · u = −Gr1/2∇p+ ∇2u+ Gr1/2T j ,

∂T

∂t
+ Gr1/2u · ∇T = Pr−1∇2T ,

 (2.2)

with the boundary conditions

u = 0 and
∂T

∂y
= 0 on y = ± 1

2
,

and

u = 0 and T = Al on x = Al, u = 0, and T = 0 on x = 0.

The dimensionless groups are the Prandtl number, Pr = ν/κ, and the Grashof number,
Gr = gβh3γ/ν2, where ν is the kinematic viscosity, κ is the thermal diffusivity, β is the
coefficient of thermal expansivity, g is the gravitational constant and ρ0 is the density.

In the case of an infinitely long container with a constant horizontal thermal flux,
a steady parallel-flow solution, known as the Hadley-cell solution, Hart (1972), exists
to equations (2.2):

u = 1
24

Gr1/2
(
4y2 − 1

)
y,

v = 0,

T = x+
1

24
PrGr

(
y4

5
− y2

6
+

1

16

)
y.

 (2.3)



Free convection in liquid gallium 299

3. Numerical techniques
The aim of the numerical study is to compute the two-dimensional steady-state

solutions for the parameter values relevant to the experiment so that a direct com-
parison can be made between the two sets of results. We used a finite element method
applied to the pressure-integrated weak form of equations (2.2), that is∫

Ω

{
fu

[
∂u

∂t
+ Gr1/2

(
u
∂u

∂x
+ v

∂u

∂y

)]
− Gr1/2p

∂fu

∂x
+
∂fu

∂x

∂u

∂x
+
∂fu

∂y

∂u

∂y

+fv

[
∂v

∂t
+ Gr1/2

(
u
∂v

∂x
+ v

∂v

∂y
− T

)]
− Gr1/2p

∂fv

∂y
+
∂fv

∂x

∂v

∂x
+
∂fv

∂y

∂v

∂y

+fT

[
∂T

∂t
+ Gr1/2

(
u
∂T

∂x
+ v

∂T

∂y

)]
+ Pr−1

(
∂fT

∂x

∂T

∂x
+
∂fT

∂y

∂T

∂y

)
+fp

(
∂u

∂x
+
∂v

∂y

)}
dxdy = 0. (3.1)

Here fu, fv, fT and fp are test functions which are chosen so that there is no con-
tribution from boundary integrals. The temperature and velocities are represented
as a sum of quadratic basis functions whilst linear discontinuous basis functions are
used for the pressure. A standard Galerkin formulation of the finite element method
was adopted in which the test functions are chosen from the same set as the basis
functions.

The calculations were carried out on a rectangular domain divided into quadrilateral
nine-node elements. In order to capture any rapid changes at the boundaries of the
cavity, the spacing of the nodes was graduated so that there were more elements
near the edges. Results were computed with a grid of 30 × 12 elements which was
further refined to 64× 24 elements to test for numerical accuracy. The values for the
magnitude of the temperature field in the centre of the cavity agree to within 1% for
the two grids over the range of Grashof numbers considered here.

The resulting discretized equations are of the form

M
∂x

∂t
+ f(x, α) = 0. (3.2)

Here, M is the mass matrix, x is the solution vector and α is the vector of the control
parameters, namely the Prandtl number, the Grashof number and the aspect ratio.
Steady-state solutions to (3.2) are sought by solving

f(x, α) = 0 (3.3)

using Newton’s method. This method is guaranteed to converge providing a good
initial guess to the solution is given. For low Grashof numbers, we found x = 0
to be sufficient. A path-following approach was used to step along a branch as
Gr is increased. All computed solutions were steady, but not necessarily stable. In
principle, the linear stability of the solutions can be tested by finding the eigenvalues
of the Jacobian of f, but this is computationally expensive. Instead, to monitor for
simple bifurcations, we evaluated the sign of the determinant of the Jacobian for
each solution. Since Newton’s method involves the calculation of the Jacobian, and
computing the determinant is inexpensive, this provides a convenient indicator of
steady-state transitions. However, as found in the GAMM workshop (Roux 1990),
steady solutions to equations (2.2) can also lose stability at a Hopf bifurcation where
a complex conjugate pair of eigenvalues crosses the imaginary axis. There is no
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Figure 2. Computed results for a Prandtl number of 0.025 and a sequence of Grashof numbers:
(a) streamlines, (b) isotherms, (c) horizontal temperature profiles along the centre of the cell.
(i) Gr = 5× 103, (ii) Gr = 1.0× 104, (iii) Gr = 2.0× 104, (iv) Gr = 4.0× 104.

equivalent monitor for such bifurcations. In order to reduce the computational cost
of finding such transitions, and hence establish the stability of a computed steady
solution, we computed only the ‘most dangerous’ eigenvalues, i.e. the eigenvalues
which have smallest real part (see Cliffe, Garratt & Spence 1993).

Typical results for a Prandtl number of 0.025 and Al = 4 are shown in figure 2 as a
sequence of streamlines, isotherms and horizontal temperature profiles for increasing
Grashof number. At low Grashof number (see figure 2ai) the flow is parallel over
much of the centre of the cavity and turns around in an approximately square end
region, as in Cormack et al. (1974). As the Grashof number is increased, the region
over which the motion is parallel shrinks and the flow can be approximated by the
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weakly nonlinear solution which Laure (1987) found to bifurcate from the Hadley-cell
solution. An infinite layer has translational symmetry which is lost at the transition to
co-rotating cells and hence a bifurcation occurs. The finite box of our two-dimensional
calculations does not have this translational symmetry and thus this bifurcation is
unfolded to give a smooth transition from parallel flow to rolls. In our case, the
box contains only one of these rolls. As the Grashof number is increased further
(figures 2aii–iv) the central ‘eye’ of the roll becomes more and more pronounced. For
lower Prandtl numbers, an evolution to three co-rotating cells is observed in all the
numerical studies reported in the GAMM workshop (Roux 1990), but this evolution
is inhibited at the Prandtl numbers relevant to our case. Note that all the streamline
patterns shown in figure 2 exhibit the centro-symmetry of the original equations.

It can be seen from the isotherms shown in figure 2(b) that extracting flow in-
formation from an experimental measurement of the temperature field is difficult.
When the Prandtl number is zero, the diffusion equation governing the heat transfer
is independent of the flow and the isotherms are equally spaced vertical lines. All
heat is transferred by conduction in such a case, and a measure of the temperature
field would give no information about the flow. In practice, gallium has a small,
non-zero Prandtl number which couples the energy equation weakly to the flow. At
low Grashof numbers, the flow is weak and the isotherms are only slightly perturbed
from the vertical (see figure 2bi). As the Grashof number is increased, see figures
2(b)(ii–iv), the isotherms become more and more deformed. However, even at the
highest Grashof number of 4 × 104, the variation at the centre of the cavity is less
than 20% of the temperature difference between the two ends. The weak effect of
the flow on the temperature field is further emphasized by the horizontal temperature
profiles along the centre of the cell, shown in figure 2(c). If all heat transfer were by
conduction, these profiles would be linear. Only very small variations from linearity
are evident in figure 2(c)(i, ii). However, as the Grashof number is increased the
temperature profiles become horizontal in the centre of the cell, i.e. in the middle of
the ‘eye’, as can be seen in figure 2(c)(iii, iv).

Calculations of the most dangerous eigenvalues show that the computed solutions
are stable to two-dimensional disturbances. For the same boundary conditions and
aspect ratio, and Prandtl numbers of 0 and 0.015, contributors to the GAMM
workshop (Roux 1990) find that transverse oscillations occur. Winters (1988) finds
that, in an aspect-ratio-4 cavity, the onset of oscillations occurs at a Hopf bifurcation
at a Grashof number of 2.55 × 104 for a Prandtl number of 0, and of 3.8 × 104 for
a Prandtl number of 0.015. Increasing the Prandtl number to 0.025 further inhibits
the onset of oscillations, see Skeldon, Riley & Cliffe (1996) who find no evidence of
a Hopf bifurcation for Grashof numbers up to 1.5× 105.

4. The experiment
4.1. Experimental apparatus

A schematic of the experimental apparatus is presented in figure 3. We outline
only the essential features of the apparatus here; the interested reader is referred to
Braunsfurth & Mullin (1996) for further details.

The working section of the experiment consists of a ceramic boat of rectangular
cross-section which holds the liquid gallium between two end plates, see figure 3. Two
boats of different lengths are used in separate sets of experiments. One is of length
51.2 ± 0.1 mm and the second of length 38.7 ± 0.1 mm. Both boats have an inner
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Figure 3. Schematic of the experimental apparatus.

width 12.82± 0.1 mm and a height of 12.81± 0.1 mm, giving chambers of dimensions
1.00× 3.99× 1.00 and 1.00× 3.02× 1.00, respectively. Each boat can be covered by a
lid which makes contact with the gallium.

The temperature gradient was applied to the liquid gallium by heating and cooling
the metal walls which form the ends of the boat. In order to achieve high-quality
repeatable results every effort was made to ensure that spatially uniform heating
and cooling was applied at the molybdenum boundaries. Moreover, good temporal
stability was required on both short and long time scales, since many of the experi-
mental observations were taken over periods of several days. In order to achieve this,
temperature-controlled fluid was circulated through large copper boxes containing
0.7 l of liquid. This volume had sufficient thermal inertia to act as a low-pass filter,
damping out external temperature fluctuations.

Measurements of the temperatures at different points in the gallium were taken
using two sheathed and insulated K-type (chromel-alumel) thermocouples. There is a
thin slot along the length of the lid so that a measuring thermocouple can be inserted
into the melt. The width of the slot is 0.5 ± 0.1 mm, that is 4% of the width of
the container. The outer diameter of the thermocouple sheath was 250 µm, which is
approximately 2% of the width of the channel so that the probe did not significantly
block the flow. Furthermore, the largest Reynolds number for the flow around the
probe was less than 4, well below the accepted critical Reynolds number for vortex
shedding from the probe.

The thermocouple was mounted on a micro-manipulator which was driven by two
computer-controlled stepping motors. This enabled the positioning of the thermocou-
ple to an accuracy of ±0.1 mm in each direction. The signal was processed using a
thermocouple amplifier and sampled using a 12-bit analog-to-digital converter. The
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data were stored and analysed using a personal computer. This computer was also
used both to control the stepper motors which located the thermocouples, and to fix
the settings of the external temperature controllers which provided the temperature
gradient along the sample of gallium.

4.2. Experimental measuring techniques

Vertical and horizontal scans of the gallium were made with the thermocouples,
allowing temperature profiles to be constructed. The computer control allowed
repeatable positioning of the thermocouples to within 1 part in 304. Each time the
probe was moved the flow was allowed to settle before measurements were made.
The settling time was empirically determined to be 60 s if the movement was a small
vertical shift, but 1000 s if the probe was moved sideways. At each position, samples
of between 600 and 1000 data points were taken over a period of minutes and the
mean, minimum and maximum values were recorded. The minimum and maximum
values give an indication of the size of fluctuations and measurement noise, and thus
provide an estimate of the experimental uncertainty. Each scan was made in first one
direction and then the other. The resulting pairs of profiles could be superimposed
showing the repeatability and robustness of the experimental measurements.

When making vertical temperature scans it was necessary to ensure that the tip of
the thermocouple did not collide with the base of the pyrophyllite channel. This was
achieved by using a plastic needle held in the micromanipulator to find the bottom
of the container. The origin of the temperature axis was set at the mid-height of
the gallium layer, in the centre of the cavity, thus allowing a compensation for an
unknown offset which arises from an arbitrary shift in the measuring electronics. The
temperature was scaled by (Th−Tc)/Al where the temperature difference Th−Tc was
obtained from the calibration curve discussed below.

The majority of the experimental measurements were taken down a vertical line in
the centre of the cavity, i.e. halfway between the ends and sidewalls. If the transport of
heat were due entirely to conduction, the measured temperature would be independent
of height. However, there was a weak convective flow and a small but discernible
temperature dependence existed which increased as the Grashof number was raised.
Thus the vertical temperature profiles provided a measure of the strength of the
convective flows. In particular, the vertical temperature difference between y = 0 and
y = 0.5 was extracted from each profile and it is this measure which is used in the
quantitative comparison between the observations and the calculations. The upper
and lower error bars on each point were estimated by considering the values of the
minimum and maximum temperatures averaged over the entire profile.

Most of the horizontal measurements were made along the centreline of the cavity
with the probe located at half the height of the fluid layer. These profiles were used
to study the lengthwise structure of the convective flow.

5. Boundary conditions and material properties
In order for quantitative comparison to be made between the experiment, theory

and numerics, two key issues need to be addressed. First, the appropriate boundary
conditions have to be considered. Secondly, the material properties of gallium are,
perhaps surprisingly, not well-known. The latter can introduce a systematic error in
the conversion of the data from dimensional to non-dimensional form and we discuss
below how we take this into account.
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Figure 4. Boundary conditions at the cold end.

5.1. Boundary conditions

We assume that the non-slip boundary conditions are satisfied along all the bounding
surfaces since the gallium was in contact with rigid walls. When the lid is present
this condition also holds on the top surface for all but the narrow region of the slot.
Indeed, measurements taken both with and without the lid present indicate that the
qualitative nature of the flow is robust as discussed by Braunsfurth (1994) but there
are small quantitative differences. In contrast, theoretical and numerical work suggest
a marked difference between a stress-free boundary and a non-slip impermeable
boundary (see, for example, Kuo & Korpela 1988, Roux 1990). However, we find that
the experimental boundary conditions are effectively always rigid due to the rapid
formation of an oxide skin on the top surface of the gallium when exposed to air.
Of course the thermal properties of the oxide layer are not the same as the lid and
presumably this, along with small effects such as variations in the thickness of the
oxide layer, lead to the small quantitative differences between the results taken with
and without a lid.

Every effort was made to achieve good thermal control. The base and lateral
walls of the boat are made from pyrophyllite, and the lid from MACOR. These have
thermal conductivities of 1.6 W m−1 K−1 and 1.48 W m−1 K−1, respectively, which are
18 and 29 times lower than that of gallium in the operating range of the experiment.
In addition, each wall is approximately 5 mm thick and we therefore consider them
to be good practical approximations to insulators.

The uniformity of the temperature distribution at the molybdenum endwalls was
investigated by bending a thermocouple probe so that the tip was in contact with
the metal wall. Then, temperature measurements were taken on an 11 × 11 grid of
points. Typical results for the cold end for the channel of dimensions 1.00×3.02×1.00
are presented in figure 4, which shows the temperature distribution in contour form
over the bottom half of the endwall. The sidewalls of the container are at the non-
dimensionalized positions of ±0.5, which correspond to the edges of the graphs. It was
necessary to take all of these particular measurements without a lid and, as a result,
the meniscus at the top surface and the corners of the boat have a significant effect.
In particular, the point of contact between the meniscus and the wall is influenced
by movement of the probe and varied by up to 2 mm. For this reason, temperature
measurements at the upper half of the wall are unreliable and we present only those
taken in the lower half. We assume these results approximately mirror those in the
upper half of the cell when the lid is present.
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Figure 5. Isotherms for parabolic end temperature profile. Gr = 4× 104.

It can be seen in figure 4 that there is a rise in the temperature in the central
region which is due to the finite thermal diffusivity of the metal endwalls. At the
centre more heat is delivered due to the additional heat transport through the gallium
by convection. At the hot end, we find the temperature at the centre of the wall to
be correspondingly lower. The amount of heat transferred by convection increases
as the Grashof number increases and so this effect is more pronounced the higher
the applied temperature difference driving the flow. The results presented in figure 4
are for a relatively high applied temperature difference of 14 K across the melt. At
this temperature the amplitude of the variation of the temperature across the metal
endwalls is 1.6 K. Although this variation in temperature at the endwalls does not
conform to the isothermal boundary conditions assumed for the numerical solutions,
the effect is small and symmetric. In order to test whether this variation drives any
significant extraneous secondary flows, computations were carried out with parabolic
temperature profiles at the end boundaries to mimic more closely the experiment. The
resulting streamlines are indistinguishable from those for the isothermal boundary
conditions and the computed values for the temperature in the centre of the cavity
change by less than 4%. In figure 5 isotherms for a Grashof number of 4 × 104,
at the upper end of the range under consideration here, are shown. This should be
compared with figure 2(b)(iv). The presence of the parabolic end temperature profiles
is just observable in the shape of the isotherms at the extremes of the cavity.

The prescribed measured temperature in the copper boxes is significantly different
from the centreline temperature measured at the wall inside the gallium. We attribute
this drop to a combination of the interface resistance between the silicone oil,
molybdenum walls and liquid gallium. The experimental Grashof numbers are
calculated using the temperatures Th and Tc measured on the centreline in the gallium
at the endwalls. In order to relate this to the temperature set by the controllers, a
calibration curve was established as discussed in detail in Braunsfurth (1994).

5.2. Material properties

The gallium used in the experiments was 99.99% pure. Results taken over a period
of months are self-consistent, suggesting that any contamination which occurred over
this period did not significantly change the material properties.

We collected available data on the material properties of gallium in the temperature
range of the experiment from Brandes & Brook (1992), Filyand & Semenova (1968),
Hampel (1954), Iida & Guthrie (1993), Kaye & Laby (1982), March (1968), Smithells
& Brandes (1976), the Metals Handbook (1990) and Touloukian et al. (1979). The
melting point of gallium is 302.8 K. Brandes & Brooke give the following temperature
dependence for the viscosity of gallium:

η = 0.4359 exp
481

T
mN s m−2, (5.1)

where T is in Kelvin. The available viscosity measurements in the range of interest
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Figure 6. Temperature dependence of the thermal conductivity for liquid gallium for the
temperature range of the experiment.

are in close agreement with this formula. We have been unable to find an equivalent
formula for the temperature dependence of the specific heat of gallium. We considered
the mean of the recorded values and found cp = 0.36± 0.03 kJ kg−1 K−1, where the
error quoted is the standard deviation. Although this represents an uncertainty of
8%, it is much smaller than the uncertainty in the thermal conductivity. We show all
the available data for the thermal conductivity plotted in figure 6 as a function of
T . From this, it can be seen that there is considerable scatter in the data. A linear
least-squares fit suggests that

k = (0.11T − 5)± 4 W m−1 K−1, (5.2)

and consequently there is a systematic error in the absolute value of the Prandtl
number, Pr = ν/κ = ηcp/k, of about 16%.

The density of gallium is known more accurately and Weast et al. (1993) quote the
temperature dependence of the density as

ρ = 6.32723− 7.3743× 10−4T + 1.37767× 10−7T 2 g cm−3. (5.3)

This fits the available data extremely well, the error being less than 0.2%. The
coefficient of thermal expansivity, β, is less well-known and we have used the value
given by Iida & Guthrie (1993) of 1.3×10−4K−1 at 303 K. When this is used together
with the expressions (5.1), (5.3) for the viscosity and density, respectively, the Grashof
number for the longer channel is given by

Gr = 1.413× 105 × (1− 2.357× 10−4T ) exp

(
−962

T

)
∆T . (5.4)

Here terms of order T 2 and higher have been neglected as they produce negligible
corrections for the temperatures under consideration.

It is assumed in the derivation of the mathematical model, given by equation (2.2),
that the thermal conductivity and the viscosity are independent of temperature and
that the temperature dependence of the density is only important in providing a
buoyancy force to drive the flow. This approximation arises from expanding the phys-
ical parameters about a fixed reference temperature and neglecting the higher-order
terms. When relating the experimental measurements to the theoretical/numerical
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results, the temperature T in expressions (5.1),(5.2),(5.3) and subsequently (5.4) is the
reference temperature. The choice of the actual reference temperature is not unique
and we have used the mean temperature in the flow for all the comparisons so that
there is consistency throughout.

6. Results
6.1. Vertical flow structure

The main comparison between the results of analytical theory, numerical calculation
and experimental observation is made using the vertical profiles measured at the
centre of the cavity, i.e. halfway between the hot and cold ends, and halfway between
the sidewalls of the 3.99× 1.00× 1.00 cavity.

Graphs comparing the experimental, analytical and numerical temperature profiles
are presented in figure 7. The Prandtl number varies from 0.025 ± 0.04 for the
lower Grashof numbers to 0.024± 0.04 for the higher Grashof numbers. The profile
shown in figure 7(a) is for a Grashof number Gr = 8.6 × 103, corresponding to
a total temperature difference between the ends of 1.38 K. The solid curve gives
the Hadley-cell temperature dependence calculated from equation (2.3). The dotted
curve represents the computed temperature profile in the centre of the cell, whilst
the points are the experimental measurements. For this low Grashof number there
is good agreement between the experimental data and the numerical and Hadley-cell
solutions. There are large error bars on the experimental points because in this case
the total amplitude of the temperature profile corresponds to 0.08 K which is close to
the limit of the accuracy of the experiment. In addition, large amplification was used
on the thermocouple signal and hence there is a significant contribution to the error
from instrumentation noise. The flow consists of a large weak convective cell. The
streamline plot for similar parameter values shown in figure 2(a)(ii) suggests that the
flow is approximately parallel for the central third of the cavity.

The vertical profile at a larger Grashof number of Gr = 1.3 × 104 is shown in
figure 7(b). The agreement between the numerical calculation and the experimental
data points is still very good for this Grashof number. However, both have diverged
slightly from the analytical solution. The error bars on this graph appear much
smaller than in figure 7(a), since the convective flow is now significant and the
temperature signal is larger than the experimental noise. In addition, the temperature
has been non-dimensionalized with the now-larger applied temperature difference.
The corresponding numerical streamline plot of figure 2(a)(iii) suggests that the flow
in the centre of the cavity is no longer parallel and that the endwalls have a significant
effect.

At an even larger Grashof number of Gr = 3.4× 104, good qualitative agreement
between the Hadley-cell, numerical and experimental profiles is still found, as shown
in figure 7(c). However, the two-dimensional numerical solution has now diverged
from the experimentally measured profile. We believe that this is due to the influence
of the lateral walls so that three-dimensional effects are important in the experiments.
Indeed recent numerical studies by A. Juel (1997, personal communication) have
confirmed this, but a more detailed analysis needs to be performed before a definite
statement can be made.

A more useful way of showing the dependence of the strength of the convective
flow as a function of temperature difference is to plot the amplitude of the vertical
temperature profiles against the Grashof number, as in figure 8. The results suggest
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Figure 7. Experimentally measured vertical temperature profiles in the centre of the cavity compared
with the two-dimensional calculations. (a) Gr = 8.6× 103, (b) Gr = 1.3× 104, (c) Gr = 3.4× 104.

that at low Grashof number, Gr < 104, the Hadley-cell solution gives a good
approximation to the experimental flow. It is interesting to note that this upper limit
is approximately the value of the Grashof number where, in the infinite layer, the
parallel-flow solution loses stability to a flow with co-rotating rolls (see Laure 1987).
For greater values of the Grashof number the two-dimensional numerical solution
remains close to the experimental results but the two data sets diverge for Gr greater
than a value of about 2 × 104. For values of the Grashof number above this the
agreement becomes more qualitative than quantitative.

As discussed at the beginning of this section there is a large uncertainty in the value
of the Prandtl number because of the lack of knowledge of the material constants of
gallium. In figure 9 we display the experimental data superimposed on three separate
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Figure 8. The vertical temperature drop in the centre of the cavity as a function of the Grashof
number for the Hadley model and the two-dimensional numerical results for Pr = 0.025 compared
with the experimental data.
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Figure 9. The vertical temperature drop in the centre of the cavity as a function of the Grashof
number for Prandtl numbers 0.021, 0.025 and 0.029 for the Hadley model and the two-dimensional
numerical results compared with the experimental data.

curves calculated using the two-dimensional numerical model with Prandtl numbers
of 0.021, 0.025 and 0.029. These correspond to the ±16% systematic error in the
Prandtl number referred to above. One obvious feature of the numerical curves is
that their qualitative form is independent of Pr for the range studied. Also, at a fixed
Grashof number, the vertical temperature drop is bigger for larger Prandtl numbers.
However, the most important aspect of the intercomparison is that there remains a
systematic divergence between the two data sets and thus the differences between the
experimental and numerical results cannot be explained in terms of uncertainty in
the Prandtl number.

All three temperature profiles presented in figure 7 show some evidence of asym-
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Figure 10. Numerical results for a rectangular cavity with a conducting upper boundary and an
insulating lower boundary. (a) Gr = 5 × 103, (b) Gr = 4 × 104: (i) streamlines, (ii) isotherms, (iii)
vertical temperature profile in the centre of the cavity.

metry. This could be due to lack of symmetry in the boundary conditions or
to non-Boussinesq effects; we have investigated the effect of both of these in our
two-dimensional numerical model. Gray & Giorgini (1976) systematically derive
conditions for the validity of the Boussinesq approximation. In our case, based on
the available information about the material properties, all their criteria are satisfied
and we therefore expect any non-Boussinesq effects to be small. This was confirmed
numerically by introducing terms into equations (2.2) to allow for both an exponen-
tial variation of the viscosity with temperature and a linear variation of the thermal
conductivity with temperature as given by expressions (5.1) and (5.2) respectively.

In order to examine the effect of the boundary conditions we considered the ex-
treme case of an upper conducting boundary whilst maintaining the lower one as an
insulator. In figure 10(a) we show the streamlines, the isotherms and the correspond-
ing vertical temperature profile in the centre of the cavity for the Grashof number
of 5 × 103. The lack of centro-symmetry is obvious in the streamline plot shown in
figure 10(a)(i), which can be compared directly with figure 2(a)(i). At this low Grashof
number the convective flow is weak and this asymmetry is not so readily discernible
from the isotherms, see figure 10(a)(ii). A slight reduction in the temperature at the
top end of the vertical temperature profile is observable however in figure 10(a)(iii). At
greater Grashof numbers these features become more prominent and when the value
of 4×104 is reached, see figure 10(b), there is a clear qualitative difference between the
shape of the vertical temperature profile in the conducting/insulating boundary case
and that of the purely insulating one. The conducting upper boundary also leads to a
drop in the amplitude of the vertical temperature. At a Grashof number of 4×104 the
conducting/insulating case has a vertical temperature drop which is 15% lower than
the corresponding insulating case. A plot of the amplitude of the vertical temperature
drop versus Grashof number has the same qualitative shape as the numerical curve as
shown in figure 8, with the slight difference that it is flattened at a lower vertical tem-
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Figure 11. (a) Temperature surface, (b) temperature contours on the cross-section
at the centre of the cavity.

perature amplitude. In the experiment the upper and lower boundary conditions are
neither perfectly insulating nor perfectly conducting. The qualitative shape and quan-
titative comparison of the vertical temperature amplitude against Grashof number
suggest that insulating boundary conditions are, however, a reasonable approximation.

The good agreement between the two-dimensional numerical results and the exper-
imental results suggests that any three-dimensional effects do not have a significant
effect on the flow at the Grashof numbers considered here. In order to check this
possibility more fully, measurements of the temperature on vertical cross-sections of
the cavity were made.

6.2. Crosswise flow structure

In this set of experiments the applied temperature difference was set moderately high,
at ∆T = 24 K, which corresponds to a Grashof number of Gr = 1.1 × 105. The
Prandtl number is Pr = 0.024 and the aspect ratio is 1.00× 3.02× 1.00.

The temperature distribution is displayed as a function of horizontal and vertical
position in figure 11(a), and is constructed from a set of temperature measurements
taken halfway between the hot and cold ends of the boat. The corresponding contour
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plot of the temperature is shown in figure 11(b). The temperature distribution displays
an s-shaped vertical profile, and a very small symmetric bulge in the horizontal direc-
tion. The amplitude of the s-shape corresponds to 40% of the applied temperature
difference and is consistent with the profiles used to compare with the Hadley-cell
and numerical model in §5.1. The small, symmetric bulge in the horizontal direction is
evidence of the damping effect of the sidewalls since, in the centre of the container, the
fluid flow is faster and the heat transport stronger. However, this is a very weak effect
since the amplitude of the bulge is 3% of the applied temperature difference, i.e. an
order of magnitude smaller than the main convective flow. The flow field is left–right
symmetric and does not show any strong three-dimensional features. However, more
recent calculations by A. Juel (1997, personal communication) suggest that there are
subtle three-dimensional effects present in the flow at all Grashof numbers and this
is the subject of current research.

6.3. Lengthwise flow structure

We present a set of six lengthwise temperature profiles measured in the 1.00×3.02×1.00
cell in figure 12. The aim of this particular investigation is to see if there is any evidence
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for multicellular flow as predicted by previous numerical studies. Each plot contains
three lines, one each for the minimum, mean and maximum of the temperature
measurements. The qualitative form of the profiles shown is noticeably different from
the numerical ones presented in figure 2(b) since the pronounced flattening of the
calculated profile at the midpoint is not seen in the experimental results. While our
numerical results are for smaller Grashof number, increasing this parameter only
increases the flattening of the profile and hence the qualitative divergence between
the two sets of results increases.

Inspection of the profiles presented in figures 12(c, d) shows the development of
distinct bumps in the profiles. These bumps are a result of significant variation
in the value of the temperature at these positions with time and are indicators of
localized oscillations in the flow. We believe that they correspond to regions of strong
shear between co-rotating cells, suggesting that there is multicellular flow present.
Braunsfurth (1994) obtains similar evidence for flows of this type when the lid is
absent in the experiment, indicating that they are robust features. It is known that
the presence of three-cell flows depends on both aspect ratio and Prandtl number
as discussed in the introduction. However, our numerical work on two-dimensional
geometries suggests that three-cell flows are not present for the Prandtl number and
aspect ratio used here. Finally, we note that multicellular flows have not yet been
found in three-dimensional numerical results.

7. Conclusions
We have made a careful comparison between the temperature profiles used to

characterize the flow field in a sidewall convection experiment on liquid gallium, two-
dimensional numerical calculations and a one-dimensional analytic solution. This
is the first systematic investigation of the steady-state flow in a cell containing a
low-Prandtl-number fluid. At sufficiently low Grashof number there is surprisingly
good quantitative agreement between the results of analytical theory, numerical
calculation and experiment. As the Grashof number is increased, the endwalls begin
to influence the flow and the two-dimensional numerical solution and the experimental
results diverge from the analytical curve, but remain in good quantitative agreement
with each other. At even higher Grashof numbers, the two-dimensional numerical
solution and the experiment diverge suggesting that three-dimensional effects become
important. Measurements of the crosswise temperature distributions indicate that the
flow retains its midplane symmetry and does not break it in the manner suggested by
Hurle et al. (1974). In addition, the experimentally obtained longitudinal profiles show
evidence of three-cell flows which are a feature of some two-dimensional numerical
investigations.

This work was supported by the Defence Research Agency at Malvern (M.G.B.,
A.J.) and by an EPSRC grant (grant no. GR/K41311) (ACS). The authors thank
Dave Broomhead and Andrew Cliffe for many useful discussions and Keith Long for
his technical expertise in manufacturing and maintaining the experiment. The authors
also thank AEA Technology, Harwell for the use of the ENTWIFE code. We would
also like to thank the referees for their careful reading of the original manuscript and
many helpful suggestions.



314 M. G. Braunsfurth, A. C. Skeldon, A. Juel, T. Mullin and D. S. Riley

REFERENCES

Afrid, M. & Zebib, A. 1990 Oscillatory three-dimensional convection in rectangular cavities and
enclosures. Phys. Fluids A 2, 1318–1327.

Brandes, E. A. & Brook, G. B. (Eds.) 1992 Smithells Metals Reference Book. 7th edn. Butter-
worth/Heinemann.

Braunsfurth, M. G. 1994 A study of side-wall convection in liquid gallium. D.Phil. thesis, Oxford.

Braunsfurth, M. G. & Mullin, T. 1996 An experimental study of oscillatory convection in liquid
gallium. J. Fluid Mech. 327, 199–219.

Cliffe, K. A., Garratt, T. J. & Spence, A. 1993 Eigenvalues of the discretised Navier–Stokes
equation with application to the detection of Hopf bifurcation. Adv. Comput. Maths 1, 337–
356.

Cormack, D. E., Leal, L. G. & Imberger, J. 1974 Natural convection in a shallow cavity with
differentially heated end walls. Part 1. Asymptotic theory. J. Fluid Mech. 65, 209–229.

Crochet, M. J., Geyling, F. T. & Schaftingen, J. J. van 1983 Numerical simulation of the
horizontal Bridgman growth of a Gallium Arsenide crystal. J. Cryst. Growth 65, 166–172.

Filyand, M. A. & Semenova, E. I. 1968 Handbook of the Rare Elements, Vol. 1: Trace Elements
and Light Elements. MacDonald Technical and Scientific, London.

Gill, A. E. 1966 A theory of thermal oscillations in liquid metals. J. Fluid Mech. 64, 577–588.

Gill, A. E. 1974 The boundary-layer regime for convection in a rectangular cavity. J. Fluid Mech.
26, 515–536.

Gray, D. D. & Giorgini, A. 1976 The validity of the Boussinesq approximation for liquids and
gases. Intl J. Heat Mass Transfer 19, 545–551.

Hampel, C. A. 1954 Rare Metals Handbook. Reimhold, New York.

Hart, J. E. 1972 Stability of thin non-rotating Hadley circulations. J. Atmos. Sci. 29, 687–697.

Hart, J. E. 1983 A note on the stability of low Prandtl number Hadley circulations. J. Fluid Mech.
132, 271–281.

Hung, M. C. & Andereck, C. D. 1988 Transitions in convection driven by a horizontal temperature
gradient. Phys. Lett. A 132, 253–258.

Hurle, D. T. J., Jakeman, E. & Johnson, C. P. 1974 Convective temperature oscillations in molten
Gallium. J. Fluid Mech. 64, 565–576.

Iida, T. & Guthrie, R. I. L. 1993 The Physical Properties of Liquid Metals. Clarendon.

Kaye, G. W. C. & Laby, T. H. 1982 Tables of Physical and Chemical Constants, 14th edn. Longman.

Kuo, H. P. & Korpella, S. A. 1988 Stability and finite amplitude natural convection in a shallow
cavity with insulated top and bottom heated from the side. Phys. Fluids 31, 33–42.

Laure, P. 1987 Study on convective motions in a rectangular cavity with horizontal gradient of
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